Bally/Astrocade
Vector Animation Tutorial

By Lance F. Squire

11-11-2008

This document assumes knowledge of Z80 assembly and basic Bally/Astrocade BIOS functions.

Although the Bally's BIOS is very powerful, The Nutting Manual, although concise, doesn't present some of
the features in an intuitive way. Leaving new potential programmers wondering how some of the commands

relate, and leaving much of the power hidden.

This tutorial will group and explain the 'Vector Animation' commands and structures, so as their true power
can be realized more effectively.

Commands:

The complete list of commands follows.

Screen Handler section:

VWRITR sub versions WRITE, WRITP, WRIT and WRITA
VBLANK sub version BLANK

VECT sub version VECTC

Cartridge Conventions (Human Interface) section:
MSKTD

Structures:

Without understanding these structures, the above commands are useless.

Vector Block
Pattern Block

As none of the Vector commands will work without the Vector Block set up, we'll start there.

Structures

Understanding the Vector Block

The Vector Block is a list of bytes that tells the BIOS how you want the graphic to move, and you how the
BIOS responded to the last function request.

This is a graphical depiction of the structure:

Vector Block
Byte Function HVGLIB Name Comment
0| Magic Register VBMR Do NOT use bit 7
1| Vector Status VBSTAT
2 Time Base VBTIMB Incremented by User
3 VBDXL
Delta X
4 VBDXH
5 VBXL
X
6 VBXH
7| X Check Mask VBXCHK
8 VBYDL
Delta Y
9 VBYDH
10 VBYL
Y
11 VBYH
12| 'Y Check Mask VBYCHK
13 Old VBOAL Maintained by User
14| Screen Address VBOAH (optional)

What does it all mean:

VBMR:
aka Magic Register.

The Magic functions of the Bally chips would take a whole other tutorial to explain. So, in short, it's how

your image will be drawn on the screen.

Modes useful for the Vector Block are:

Bit 3
Bit 4

Bit5 32D 20H

8D 08H
16D 10H OR (MROR)

Expand (MRXPND) Monochrome stored image -> Colour screen
Draw only bits that are not O in image
XOR (MRXOR) Flip bits 0-0=0 0-1=1 1-1=0 1-0 =1 screen-image

Bit6 64D 40H Flop (MRFLOP)

All Bits Off Plop

Horizontal image flip
Draw all bits of image

Flop, (OR or XOR) and Expand can be mixed. That is, you can Expand a monochrome image to the colour
screen while XORing it with the screen image in a FLOPped mode.

Translation:

0D OH Draw Image, Destroy background. (PLOP)

8D 08H Draw Monochrome Image, Destroy Background.

(Expand, PLOP)

16D OH Draw Image, Keep Background where image blank (=0) (OR)

24D 18H Draw Monochrome Image, Keep Background where

image blank

(Expand, OR)

32D 20H Draw Image, Merge with Background (XOR)

40D 28H Draw Monochrome Image, Merge with Background

(Expand, XOR)

64D 40H Draw Image Horizontally Flipped, Destroy Background (FLOP, PLOP)

72D 48H Draw Monochrome Image, Horizontally Flipped,
Destroy Background.

80D 50H Draw Image Horizontally Flipped, Keep Background

88D 58H Draw Monochrome Image, Horizontally Flipped,

Keep Background

96D 60H Draw Image Horizontally Flipped, Merge

with Background

104D 68H Draw Monochrome Image, Horizontally Flipped,

Merge Background

Ok... Got that?

(Expand, FLOP, PLOP)

(FLOP, OR)
(Expand, FLOP, OR)

(FLOP, XOR)

(Expand, FLOP, XOR)

VBSTAT:
(Vector Status)

Bit7 128D 80H Active(VBSACT) Must be set or Vector routines will ignore.
Bit6 64D 40H Blank(VBBLNK) O to start, used by VBLANK and VWRIT

VBTIMB:
(Time Base)

This byte indicates how many times to apply the Deltas to the Coordinates. That is, 1=1 increment per call,
2=2 increments per call. Dropping the Knob value (0-255) into here gives you variable speed without
affecting the direction.

This byte is always decremented to O after calling VECT. Therefor you must always place at least a 1 in
here before calling VECT.

Deltas:
A 'Delta’ in this case is simply a value indicating a direction or Vector.

If we wanted our graphic to move down 1 pixel but Right 2 pixels, We can simply place 1 in the X Delta and
2 in the Y Delta. When we call VECT the X and Y Co-ordinates will be updated appropriately.

That's fine for very coarse movements, but sometimes you need much finer calculations to reach the target.
The Bally allows fractional Deltas by using a 2™ Byte. This allows us to have our graphic move 1 pixel right

each call, but only 1 pixel down every 4 calls by indicating Deltas of X=1.0 and Y=0.25.

VBDXL & VBDYL.:
(Delta Fractional)

This is the Fractional half of the Delta value. (After the decimal point)

VBDXH & VBDYH:
(Delta)

This is the whole number value of the Delta. (Before the decimal point)

To enter an X Delta of 2.25, set VBDXH=2 and VBDXL=25

VBXCHK & VBYCHK:

(Boundary Checking)
Bit1l 1D 1H Limit Check (VBCLMT) Set to one (1) for limit checking
Bit2 2D2H Reverse Delta (VBCREV) changes sigh of delta when limit is reached.

In other words, if the graphic reaches the limit, it's direction is automatically
reversed, giving a Bounce effect.

Bit4 8D 8H Limit Attained (VBCLAT) If the desired effect is not an automatic Bounce,
The system will set this flag and hold the graphic at the limit position, until
the user changes the Delta.

Now the first question here should be, “Where do I set these Limits?!”. It's in the VECT call detailed later.

VBOAL & VBOAH
(Old Screen Address)

These bytes are only used by VBLANK and must be maintained by the User.

This means that if VBLANK is not being used to erase your graphics, then your Vector Block needn’t
include them.

However, if VBLANK is being used to erase graphics, you must take the absolute screen address calculated
by VWRITR and place it here.

That’s it for the Vector Block. Next we move to the Pattern Block, where your image and related parameters
are defined.

The Pattern Block

This is the description of the image to be drawn. For use in the Vector commands, Displacement and Size
bytes are included before the actual image.

X Displacement | 0

Y Displacement | 1

X Size 2

Y Size 3

Image bytel 4
Etc..

Image byte +n | N

Displacement:

This value allows you to set the 'control point' somewhere other that the top left corner of the image. That is,
if you have a ball image 5 pixels wide and 5 pixels high and want the calculations to relate to the center of
the ball, you would set X and Y displacements to 3

Eg:

Normal Displaced

Size:

X size is how many bytes wide the image data is, not how wide it will appear on the screen. For instance, if
we're using a monochrome image (1 bit per pixel) our 5x5 ball would look like this in Binary:

01110000
11111000
11111000
11111000
01110000

Equaling 1 byte wide by 5 bytes tall or X=1 and Y=5

If we stored the ball image in colour, as it would appear on the screen it would look like this:

00101010
1010 10 10
1010 10 10
1010 10 10
00101010

00 00 00 00
10 00 00 00
10 00 00 00
10 00 00 00
00 00 00 00

00 = Background 01=2" colour 10=3" colour and 11=4" colour

This is equivalent to what the monochrome ball could expand to. However this image has a fixed colour.
Obviously this image would have an X of 2 and a Y of 5

Or you could make a more colourful image.

00 10 10 10
1001 10 10
01 1101 10
11111101
00111111

00 00 00 00
10 00 00 00
10 00 00 00
10 00 00 00
00 00 00 00

Commands

VWRITR
(Vector WRITe Relative)

This command tells the Bally's BIOS to draw our graphic to the screen as specified by the Vector Block
provided.

Calling Methods:

SYSSUK:
(System loads variables for the call.)

SYSSUK VWRITR
DEFW (vector block address)
DEFW (pattern block address)

SYSTEM:
(User loads variables before call.)

LD HL, (pattern block address)
LD IX, (vector block address)
SYSTEM VWRITR

Returned values:

DE = Screen Ram address calculated
A = Magic register value used

The value in DE should be copied into the Vector Block at VBOAL & VBOAH if you are using VBLANK
to clear your graphic.

If you are using the EXPAND function of the Magic Register you must specify what colours the image is to
appear, by placing the combined value into the 'Expansion port'.

Like so,
LD A,0CH ; COLOURS TO EXPAND TO (1100)
OUT (XPAND),A ;INTO EXPANSION PORT

The XPAND port takes the 1 and 0 bits of a monochrome image and maps them to the specified pairs on the
port. The value above tells the port that 1 bits should be colour value 3 (11 binary) and that O bits should be
color value 0 (00 binary)

This allows us not only to change the intended colour of the image by mapping the 1 bits to any non
background value (01, 10, 11) but to also produce inverse images by making the O bits the non background
value. You can also mix as you please.

VBLANK
(Vector BLANK)

This command zeros out any area indicated.

It first checks the Vector Block to see if the VBBLNK bit is set. This should have been done by VWRITR. If
not set, operation is ignored. If set VBBLNK is cleared along with the area of screen indicated.

Calling Methods:
SYSSUK:
SYSSUK VBLANK
DEFW (vector block address)
DEFB (X size in bytes *)
DEFB (Y size)
SYSTEM:
LD IX, (vector block address)
LD D, (Y size)
LD E, (X size in bytes *)

SYSTEM VBLANK

* You should remember that any monochrome image expanded to the screen now occupies twice as many
bytes horizontally. This means that a monochrome image with X size of 2 in the Pattern Block will need an
X size of 4 to blank properly! Also VBLANK ignores the Magic Register and Shift bits. You must add 1 to
the X width to blank the pixels shifted right from the saved address.

EG:

Image in Image shifted 2 pixels right
BLANK box. BLANK box doesn't shift.

VECT
(VECTor)

This command calculates the next position of the graphic, and indicates if any actual (whole number) motion
took place.

Calling Methods:
SYSSUK:
SYSSUK VECT
DEFW (vector block address)
DEFW (Limit Table)
SYSTEM:
LD HL, (Limit Table)
LD IX, (vector block address)

SYSTEM VECT
Returned values:

C = Time base used (number of times vectors added)
Z = True, if no whole number values changed. (no drawable motion)

Limit Table:
Not shown anywhere in The Nutting Manual.

This is a list of bytes indicating the boundaries of your moving graphic.

X LOWER LIMIT LEFT EDGE
X UPPER LIMIT RIGHT EDGE
Y LOWER LIMIT TOP EDGE

Y UPPER LIMIT | BOTTOM EDGE

Remember to account for the width of your image. If we wanted our 5 pixel ball to bounce off the right edge
of the screen, (presuming no offset) we must move X UPPER 5 pixels from the right. On a 160 screen that
would be 155. If we don't do this the right of the ball will shoot off the right of the screen and wrap around
to the left. Not very professional looking... :)

MAKTD
(joystick MaSK To Deltas)

This command uses the value returned by a Joystick and returns positive, negative or 0 values depending on
the 'Delta’ values we give it.

This allows us to drop or add the returned values into the Vector Block without further consideration for
control.

Calling Methods:
SYSSUK:
LD B, (joystick mask)
SYSSUK MSKTD
DEFW (X Delta Positive value)
DEFB (Flop flag)
DEFW (Y Delta Positive value)
SYSTEM:
LD B, (joystick mask)
LD C, (Flop flag)
LD DE, (X Delta Positive value)
LD HL, (Y Delta Positive value)

SYSTEM MSKTD
Returned values:

DE = X Delta
HL =Y Delta

Note: B is not 'sucked' in and must be loaded manually or from a previous system call.

The Delta values entered are what we would like to use if the joystick is held Right (Left if Flopped) or
Down. Negative values will be returned if the joystick is Left (Right if Flopped) or Up.

Flopped values will make more sense after reading the 'Flopping around' tutorial.

If we give it an X Delta of 1.0 for single pixel motion, we will get -1.0 for Left, 0.0 for middle and 1.0 for
Right. Dropping these values directly into the X Delta bytes of the Vector Block, doing a VECT and
VWRITR will move our graphic appropriately for direct motion control.

If we give it a Delta of 0.25 and added the resulting values to the Vector Block Deltas, we could simulate the

inertial motion of a space ship or hover craft.

Now the BIG question, What IS the Joystick Mask!?

10

JOYSTICK MASK

This is actually the byte value returned by the joystick port. That is, reading the appropriate port for a
joystick (10H for joystick 0) and placing the value here works. Alternatively, you can call the 'SENTRY"
command, pick up the joystick changes through 'DOIT" and the value will already be in the B register.

See 'SENTRY Tutorial' for more detail on SENTRY and DOIT.

Putting it all together!

Now that we have an idea of what these commands do, lets put them to work.

Our first demo will be a simple bouncing ball. The assembly code looks like this:

TR I R I R I I O I R I R O
4

;* Set-up for Bally Cart *

shkkkkhkhkkhkhkhkhkhkhkkhkhkrkkhkkkkkxx

INCLUDE HVGLIB.H

B1VEC EQU 4F0OOGH

ORG 2000H
DEFB 55H
DEFW MENUST
DEFW LABEL
DEFW PROG1
LABEL DEFB '"BALL TEST',0

vhkkhkkkkhkkkkhkkhkkhkhkkhkkk

14
;* Bouncing ball *
PIRCR R I I I 3 O I I I
4

PROG1 SYSSUK FILL
DEFW 4000H
DEFW 95%*40
DEFB 0
LD IX, B1VEC
LD (IX+VBMR), 8
LD (IX+VBSTAT), 192
LD (IX+VBTIMB), 1
LD (IX+VBDXL), 0
LD (IX+VBDXH), 1
LD (IX+VBXL), 0
LD (IX+VBXH), 0
LD (IX+VBXCHK), 3
LD (IX+VBDYL), 0
LD (IX+VBDYH), 1
LD (IX+VBYL), 0
LD (IX+VBYH), 0
LD (IX+VBYCHK), 3
LD (IX+VBOAL), 0

Ne N= Ns N

Ne N= Ns N

Bally Library
VECTOR BLOCK FOR BALL TEST
Start of Cart memory

NORMAL (MENUED) CART 'SENTENAL'
(START OF ONBOARD MENU)
ADDRESS OF MENU TEXT

WHERE TO GO IF SELECTED.

ZERO DELIMITED STRING

CLEAR SCREEN

START OF SCREEN RAM

95 LINES (40 BYTES PER LINE)
ZERO VALUE

BEGIN SETUP OF VECTOR BLOCK

MAGIC: EXPAND

STATUS: ACTIVE+BLANKING

TIMES: 1 (NUMBER OF TIMES DELTA IS ADDED TO POSITION)
DELTA (DIRECTION)X LOW ORDER BYTE (FRACTIONS)
1 PIXEL PER CALL MOTION (RIGHT)

INITIAL POSITION LOW ORDER BYTE (FRACTIONS)
ACTUAL X POSITION ON SCREEN

X LIMIT CHECKING: ON + REVERSING (BOUNCE)
DELTA (DIRECTION)Y LOW ORDER BYTE (FRACTION)
1 PIXEL PER CALL MOTION (DOWN)

INITIAL POSSITION LOW ORDER BYTE (FRACTION)
ACTUAL Y POSITION ON SCREEN

Y LIMIT CHECKING: ON + REVERSING (BOUNCE)

OLD ADDRESS: CLEARED FOR NOW

11

LD (IX+VBOAH), 0 ; END VECTOR BLOCK SETUP

LD A, OCH ; COLOURS TO EXPAND TO
ouT (XPAND), A ; INTO EXPANSION PORT
LOOP SYSSUK VBLANK ; ERASE BALL
DEFW B1VEC ; VECTOR BLOCK
DEFB 3 ; X SIZE IN BYTES PLUS 1
DEFB 6 ;Y SIZE
SYSSUK VWRITR ; DRAW BALL
DEFW B1VEC : VECTOR BLOCK TO USE
DEFW BALL1 ; IMAGE TO DRAW
LD IX, B1VEC
LD (IX+VBOAL),E ; COPY SCREEN ADDRESS TO VECTORBLOCK
LD (IX+VBOAH), D
SYSSUK PAWS ; PAUSE FOR
DEFB 1 ; ONE CYCLE
SYSSUK VECT :; MOVE BALL
DEFW B1VEC : VECTOR BLOCK TO USE
DEFW BLMT ; LIMITS TABLE TO USE
LD IX, B1VEC
LD (IX+VBTIMB),1 ; RE ACTIVATE?
JR LOOP ; BACK TO DRAW BALL
s hhkkhkhkhkhkrkhkrkhkrkhkrkhkhkkhkk ok
14
;* BALL IMAGE BLOCK *
PRI 3 I I b I b I S b S b b I 3
14
BALL1 DEFB 0 ; NO X OFFSET
DEFB 0 : NO Y OFFSET
DEFB 1 : 1 BYTE WIDE
DEFB 6 ; 6 BYTES TALL
DEFB 011110008 ;
DEFB 11011100B ; IMAGE DATA
DEFB 10111100B
DEFB 10111100B
DEFB 11111100B
DEFB 011110008
PRI 2 I b I b I b O I
14
;* BALL LIMITS *
akk ok ok ok k ok k ok ok ok ok k kK
14
BLMT DEFB 0 ; X LOWER LIMIT (LEFT EDGE)
DEFB 153 ; X UPPER LIMIT (RIGHT EDGE)
; 159-8 FOR 8 PIXEL WIDE BALL
DEFB 0 ; Y LOWER LIMIT (TOP EDGE)
DEFB 89 ; Y UPPER LIMIT (BOTTOM EDGE)
;

95-6 FOR 6 PIXEL HIGH BALL

12

Bouncing Ball Take apart.

Lines 1-17
First we load the Bally Library, ' HVGLIB.H'.
This allows us to use the system commands by name.

Next is the location for the Vector Block. As the only RAM in the Bally/Astrocade IS screen ram, it has to
hide there. 4FOOH is near the bottom of the screen, and already hidden by the Bally Menu screen set-up.

In line 8 we declare where in memory this program is to reside. 2000H is the start of Cartridge ROM.
The rest of this section is the standard set-up for a Bally Cartridge using a menu.

Lines 18-46
First we clear the screen of the Bally Menu, using the FILL command.

Then we initialize our Vector Block.
Finally, we load the 'Expand port' with the colour pixel values for our Ball image.

Lines 47-51
Start of Main Loop!

OH, oh, we called VBLANK before we drew the Ball or got the screen address!!
Not to worry, the VBBLNK bit isn't set, so this will be ignored the first time through.

Note: It is always best to not erase your images until immediately before you re-draw them. This reduces
flickering/blinking to the absolute minimum. If done right, it'll happen during the vblank of the TV and
never be seen at all.

Lines 52-55
VWRITR draws our Ball image as specified by the Vector Block and Image Block.

Lines 56-59
Copies calculated screen address into Vector Block for use in VBLANK call.

Lines 60-63
Pauses execution for 1/60 of a second. (One screen draw on the TV)
It would be better to tie our draw routines into the vblank timing, but this is a quick kluge.

Lines 64-67
VECT calculates the next position of our Ball, using the Vector Block and the Ball Limit Table.

Lines 68-71

Reset Vector Block Timebase to 1 (it was decremented to 0 in VECT call)
Jump to start of loop.

13

Lines 72-86
Define Ball Image block.

Lines 87-96
Define Ball Limit Table.

Version 1.0 - 2-13-2004
- First Release (to A.T.)
Version 1.01 — May 7, 2004 (Editing by A.T.)
- Corrected spelling errors
- Removed tabs from source code; replaced with spaces
- Changed source code to courier font
- Changed tables so that all text is visible and centered
- Changed table/listing font sizes so that they wouldn’t wrap
- Added Assembly listing of Ball example as an appendix

Version 1.02 — November 11, 2008 (Editing by Lance referencing comments by Richard Degler)
- Corrected missed spelling
- Added full colour ball example
- Changed 'BLANK' to' VBBLNK' where appropriate
- Changed 'SENTENAL' to 'SENTRY' where appropriate
- Some pageing adjustments

Version 1.03 - November 23,2008 (Editing by Lance referencing comments by Richard Degler)

- Added 1 to VBLANK X size, with explanation
- Added HVGLIB names for Magic Register bits

14

oNogkwNE

Appendix 1: Ball Example Assembly Listing

ckkkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkk Kk
)

Bally Cart *

EEE O I R O

;* Set-up for

;oZmac -i

’

I NCLUDE HVGLIB. H

****. '_'\/G_I B H * Kk k%

* k k%

exanml. asm ****

B1VEC EQU 4FO0OH

ORG

DEFB

DEFW
DEFW
DEFW

DEFB

SYSSUK FILL

RST 56

DB FILL+1

IF FILL = I NTPC
ENDM

DEFW 4000H

DEFW 95*40

DEFB 0

LD | X, BLVEC

LD (I X+VBMR) , 8
LD (I X+VBSTAT) , 192
LD (I X+VBTI MB) , 1
LD (1 X+VBDXL) , 0
LD (I X+VBDXH) , 1
LD (1 X+VBXL) , 0
LD (I X+VBXH) , 0
LD (I X+VBXCHK) , 3
LD (1 X+VBDYL) , 0
LD (1 X+VBDYH) , 1
LD (1 X+VBYL) , O
LD (I X+VBYH) , 0
LD (1 X+VBYCHK) , 3

9:
10: 4F00
11:
12: 2000
13:
14: 2000 55
15: 2001 1802
16: 2003 0720
17: 2005 1120
18:
19: 2007 42414C4C LABEL
20544553
5400
20:
21:
22 BRI I O O
23: ;* Bouncing ball *
24 ;*****************
25:
26: 2011 PROGL
26: 2011 FF
26: 2012 1B
26: 0000
26: ENDI F
26: 2013
26:
27: 2013 0040
28: 2015 DBOE
29: 2017 00
30:
31: 2018 DD21004F
32: 201C DD360008
33: 2020 DD3601CO0
34: 2024 DD360201
ADDED TO PGSI Tl ON)
35: 2028 DD360300
(FRACTI ONS)
36: 202C DD360401
37: 2030 DD360500
(FRACTI ONS)
38: 2034 DD360600
39: 2038 DD360703
(BOUNCE)
40: 203C DD360800
(FRACTI ON)
41: 2040 DD360901
42: 2044 DD360A00
(FRACTI ON)
43: 2048 DD360B00
44: 204C DD360C03
(BOUNCE)

-m -0 examl. bin -x examl. | st

examl. asm

; Bally Library

2000H

55H
MENUST
LABEL
PROGL

' BALL TEST', 0

15

VECTOR BLOCK FOR BALL TEST
Start of Cart menory

NORVAL (MENUED) CART ' SENTENAL'
(START OF ONBOARD MENU)
ADDRESS OF MENU TEXT

VWHERE TO GO | F SELECTED.

ZERO DELI M TED STRI NG

CLEAR SCREEN

START OF SCREEN RAM
95 LI NES (40 BYTES)
ZERO VALUE

BEA N SETUP OF VECTOR BLOCK

MAG C. EXPAND

STATUS: ACTI VE+BLANKI NG

TIMES: 1 (NUMBER OF TIMES DELTA IS
DELTA (DI RECTI ON) X LOW ORDER BYTE

1 PIXEL PER CALL MOTI ON (RI GHT)
NI TI AL PCSI TI ON LOW ORDER BYTE

ACTUAL X PCSI TI ON ON SCREEN
X LIMT CHECKING ON + REVERSI NG

DELTA (DI RECTION) Y LOW ORDER BYTE

1 PIXEL PER CALL MOTI ON (DOAN)
I NI TIAL POSSI TI ON LON ORDER BYTE

ACTUAL Y POSI TI ON ON SCREEN
Y LIMT CHECKING ON + REVERSI NG

45:
46:
47:
48:
49:
50:
51:
51:
51:
51:
51:
51:
51:
52:
53:
54.
55:
56:
56:
56:
56:

56:
56:

58:
59:
60:
61:
62:
63:
64:
64:
64:
64:
64:
64:
64:
65:
66:
67:

68:
68:

68:
68:

69:
70:
71:
72:
73:
74:
75:
76:
77:

79:
80:

82:
83:
84:
85:

2050
2054

2058
205A

205C
205C
205D
0000

205E

205E
2060
2061

2062
2062
2063
0000

2064

2064
2066

2068
206C
206F

2072
2072
2073
0000

2074

2074

2075
2075
2076
0000

2077

2077
2079

207B
207F
2083

2085
2086
2087
2088
2089
208A

DD360D00
DD360EO0O

3EO0C
D319

FF
29

004F
03
06

FF
1F

004F
8520

DD21004F
DD730D
DD720E

FF
51

01

FF
3F

004F
8F20

DD21004F
DD360201
18D7

LOOP

ENDI F

ENDI F

ENDI F

ENDI F

LD (1 X+VBOAL) , 0

LD (1 X+VBOAH) , 0
LD A, OCH

QUT (XPAND), A
SYSSUK VBLANK

RST 56

DB VBLANK+1

IF VBLANK = | NTPC
ENDM

DEFW B1VEC

DEFB 3

DEFB 6

SYSSUK WRI TR

RST 56

DB WRI TR+1

IF WRI TR = | NTPC
ENDM

DEFW B1VEC

DEFW BALL1

LD | X, BLVEC

LD (1 X+VBOAL) , E
LD (1 X+VBOAH) , D
SYSSUK PAWS

RST 56

DB PAWG+1

IF PAWS = | NTPC
ENDM

DEFB 1

SYSSUK VECT

RST 56

DB VECT+1

IF VECT = INTPC
ENDM

DEFW B1VEC

DEFW BLMT

LD | X, BLVEC

LD (1 X+VBTI MB), 1
JR LOooP

EE o O R R O R R R o
)

- %

BALL | MAGE BLOCK *

EEE I Sk O I
)

00

01
06
78

BALL1

DEFB 0
DEFB 0
DEFB 1
DEFB 6
DEFB 011110008B
DEFB 110111008

16

’

OLD ADDRESS: CLEARED FOR NOW
END VECTOR BLOCK SETUP

COLOURS TO EXPAND TO
| NTO EXPANSI ON PORT

ERASE BALL

VECTOR BLOCK
X SIZE I N BYTES
Y SIZE

DRAW BALL

VECTOR BLOCK TO USE
| MAGE TO DRAW

COPY SCREEN ADDRESS TO VECTORBLOCK

PAUSE FOR

ONE CYCLE

MOVE BALL

VECTOR BLOCK TO USE
LIM TS TABLE TO USE

RE ACTI VATE?
BACK TO DRAW BALL

NO X OFFSET
NO Y OFFSET
1 BYTE WDE
6 BYTES TALL

| MAGE DATA

86:

88:
89:
90:

92:
93:
94:
95

96:

98:
99:
100

208B
208C
208D
208E

208F
2090

2091
2092

BC
BC
FC
78

00
99

00
59

DEFB
DEFB
DEFB
DEFB

EE I R I I O

;¥ BALL LIMTS *

EE O R I I O R
)

BLMT

DEFB
DEFB

DEFB
DEFB

10111100B
101111008
111111008
011110008B

0 : X LOAER LIM T (LEFT EDGE)
153 ; X UPPER LIM T (RI GHT EDGE)
: 159-8 FOR 8 PI XEL W DE BALL

0 © Y LOAER LIM T (TOP EDGE)
89 : Y UPPER LIM T (BOTTOM EDGE)
: 95-6 FOR 6 PIXEL H GH BALL

17

	"Bally/Astrocade Vector Animation Tutorial," Lance Squire, 2008

